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Abstract. We study the property of certain complex networks of being both sparse and highly connected,
which is known as “good expansion” (GE). A network has GE properties if every subset S of nodes (up
to 50% of the nodes) has a neighborhood that is larger than some “expansion factor” φ multiplied by the
number of nodes in S. Using a graph spectral method we introduce here a new parameter measuring the
good expansion character of a network. By means of this parameter we are able to classify 51 real-world
complex networks — technological, biological, informational, biological and social — as GENs or non-
GENs. Combining GE properties and node degree distribution (DD) we classify these complex networks
in four different groups, which have different resilience to intentional attacks against their nodes. The
simultaneous existence of GE properties and uniform degree distribution contribute significantly to the
robustness in complex networks. These features appear solely in 14% of the 51 real-world networks studied
here. At the other extreme we find that ∼40% of all networks are very vulnerable to targeted attacks. They
lack GE properties, display skewed DD — exponential or power-law — and their topologies are changed
more dramatically by targeted attacks directed at bottlenecks than by the removal of network hubs.

PACS. 89.75.Fb Structures and organization in complex systems – 89.75.Da Systems obeying scaling laws
– 89.20.-a Interdisciplinary applications of physics – 89.75.Hc Networks and genealogical trees

1 Introduction

We live in a world of networked infrastructures formed
by communication, power grids, transportation and fuel
distribution networks whose security is of universal con-
cern [1–4]. Such systems need to be robust and capa-
ble of surviving the loss of nodes/links that can result
from random failures or intentional attacks [5–10]. Many
other networks function in nature and society showing
different degrees of tolerance to damage on their struc-
tures [11–13]. An understanding of the vulnerabilities of
complex networks is fundamental to the design of ro-
bust systems [5,14,15] and strategies for management
of their social impact [16,17]. Robust networks must be
highly tolerant to errors related to random failures and
as invulnerable as possible to intentional attacks against
nodes/links [6]. Most investigations about the resilience
of real-world networks to targeted attacks have been cen-
tered on the analysis of attacks targeted on the highest
degree nodes [6–9,18–20]. It is actually known that “scale-
free” networks [21], which include the World-Wide Web,
the Internet, and various social and biological networks,
are more robust to random failures of nodes than networks
in which the node distribution is exponential. However,
scale-free networks are extremely vulnerable to targeted
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attacks against their hubs, the most connected nodes [6].
It is also known that the removal of certain links in a com-
plex network due to malfunction or attack can also lead
to the collapse of the system [22]. Node/link robustness
in complex networks is also intimately related to a prop-
erty known as “good expansion” (GE) [23,24]. Formally,
a network is considered to have GE if every subset S of
nodes (S ≤ 50% of the nodes) has a neighborhood that
is larger than some “expansion factor” φ multiplied by the
number of nodes in S. A neighborhood of S is the set of
nodes which are linked to the nodes in S. Formally, for
each vertex v ∈ V (where V is the set of nodes in the
network), the neighborhood of v, denoted as Γ (v) is de-
fined as: Γ (v) = {u ∈ V |(u, v) ∈ E } (where E is the set of
links in the network). Then, the neighborhood of a subset
S ⊆ V is defined as the union of the neighborhoods of the
nodes in S: Γ (S) =

⋃
v∈S Γ (v) and the network has GE if

Γ (v) ≥ φ |S| ∀S ⊆ V . Good expansion networks (GENs)
show excellent communication properties due to the ab-
sence of bottlenecks, which are small sets of nodes/links
whose elimination leads to fragmentation of the network
into at least two large connected components.

While the determination of network robustness with
respect to hub removal can be determined by studying
the degree distribution (DD) of the nodes [6–9], the ex-
ploration of GE properties is an NP-hard computational
problem [25]. An indirect exploration of GE properties
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can be carried out by analysis of the spectrum of the ad-
jacency matrix of the network [26]. A necessary condition
for a network to be a good expander is that the gap be-
tween the first and second eigenvalues of the adjacency
matrix (∆λ = λ2 − λ1) be sufficiently large. The prob-
lem is to determine how large this spectral gap needs to
be for a network be a GEN. We can solve this problem
by assessing the degree of correlation between the largest
eigenvector of the adjacency matrix of the network and
the weighted sum of all odd-length walks that start and
end at the same node. The theoretical justification of this
method is given below.

2 2 GE networks vs. non-GE networks

The simplest way of defining informally a good expan-
sion network (GEN) is by defining a network lacking this
property. A non-GEN is a graph having at least two parts
that can be isolated from one another by disconnecting
a “small” number of nodes or links. These nodes or links
which make the function of bridges between these parts
are known as bottlenecks. Consequently, a GEN is a net-
work without bottlenecks.

Here we designate the number of walks of length L
starting at node i by NL (i) and the total number of walks
of this length existing in the network by NL (G). The prob-
ability that a walk selected at random in the network has
started at node i is simply:

PL (i) =
NL (i)
NL (G)

. (1)

We will consider walks of extremely large lengths, in such a
way that we can consider L → ∞. This probably increases
with the density of the network. That is, in a network
having a large proportion of links to nodes there is a high
probability that a walk selected at random has started in
an arbitrary node i. PL (i) is equal to one when all nodes
are interconnected to each other, the so-called complete
graph. In this case every walk of infinite length starting at
any node of the network will visit necessarily at least one
of the other nodes, but because all nodes are equivalent,
it guarantees that the walk will necessarily visit node i.

There is a graph spectral measure that fulfil the re-
quirements for being considered as the probability PL (i).
The “spectrum” of a network is a listing of the eigenvalues
of the adjacency matrix of such network. It is well-known
that every n × n real symmetric matrix A has a spec-
trum of n orthonormal eigenvectors −→γ 1,

−→γ 2, . . . ,
−→γ n with

eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn [26]. It is known that for
non-bipartite connected network such as those studied in
this work, with nodes 1, 2, . . . , n, for L → ∞, the vector
[PL (1) PL (2) · · · PL (n)] tends toward the eigenvec-
tor corresponding to the largest eigenvalue of the adja-
cency matrix of the network. Consequently, if λ1 des-
ignates the largest eigenvalue of the network and γ1 is
the eigenvector corresponding to λ1, then the elements
of γ1 represent the probabilities of selecting at random

a walk of length L starting at node i when L → ∞:
γ1 (i) = PL (i) [27].

On the other hand, for dense and homogenous net-
works it is natural to expect that the nodes with the
largest probabilities PL (i) correspond to highly clustered
nodes. This is well illustrated by the example of the com-
plete graph, in which the nodes have the largest possible
clustering. Highly clustered nodes are those implicated in
a large number of clusters. However, if a network is formed
by two dense parts, A and B, connected with a “small”
number of links the situation is radically different. In this
case, one particular node can be highly clustered but it
can displays a very low probability that a walk selected at
random in the network has started at that node. This is
because a walk can infinitely visit the nodes of one of the
two chunks forming the network, which are not necessarily
where our “target” node is located. For a walk starting at
a node located at A visits the part B of the network it
has to cross the narrow bridge, or bottleneck, connecting
both branches.

We can also account for the probability that a “short-
range” walk selected at random in the network has started
and ended at node i. This probability can be written as
follow:

PS (i) =
SCodd (i)
SCodd (G)

(2)

where the term SCodd refers to the odd subgraph central-
ity [28,29], which accounts for the participation of a node
in all subgraphs containing at least one odd cycle but
giving more weight to closest neighbours. This weighting
scheme guarantees the “short-range” nature of this pa-
rameter, because walks visiting very distant nodes receive
a very small weight in the sum [28,29]:

SCodd (i) =
∞∑

l=0

µ2l+1 (i)
(2l + 1)!

. (3)

We have previously shown that this expression can be
calculated by using the graph spectrum in the following
form [29]:

SCodd (i) =
N∑

i=1

[vj (i)]2 sinh (λj). (4)

Because SCodd (G) is simply the sum of SCodd (i) for all
nodes in the network we can use the values of SCodd (i)
directly instead of using PS (i). The approach that study
the existence of a correlation between PL (i) and SCodd (i)
is designated as spectral scaling method.

3 Spectral scaling method

If we consider the extreme case of a network consisting
of two separated (identical) components such as the one
illustrated in Figure 1a we can see that the difference be-
tween the largest and second largest eigenvalues (spectral
gap) is zero: ∆λ = 0. The inclusion of a “small” number
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Fig. 1. Illustration of an artificial network formed by two isolated components (a), which shows a spectral gap ∆λ = 0. The
connection of these two components by a single link (b) represents an example of a network lacking good expansion properties
due to the presence of a bottleneck. The spectral gap in this network is close to zero. The inclusion of more links between the
two components of the network increases the spectral gap for network in (c), which reach the maximum for the complete graph
(d), where every pair of nodes is connected to each other.

of links joining together these two components will change
the values of the first two eigenvalues but we can see that
the spectral gap remains close to zero (see Fig. 1b). How-
ever, when the number of links connecting both clusters
increases, the spectral gap also increases, reaching its max-
imum when every pair of nodes is connected to each other
(see Figs. 1c and 1d). Consequently, it is known that when
a network has bottlenecks like those in Figure 1b, λ1 ≈ λ2,
but on the contrary, in cases where the network is a GEN
λ1 	 λ2.

Then, if we write the expression for SCodd (i) in the
following form:

SCodd (i) = [γ1 (i)]2 sinh (λ1) +
∑

j=2

[γj (i)]2 sinh (λj) (5)

where γ1 (i) is the ith component of the principal eigen-
vector and λ1 is the principal eigenvalue of the network.
We will have that for networks having good expansion
properties the first term of (5) will be much larger than
the second one, [γ1 (i)]2 sinh (λ1) 	 ∑

j=2

[γj (i)]2 sinh (λj).

Thus:
SCodd (i) ≈ [γ1 (i)]2 sinh (λ1) (6)

and the principal eigenvector of the network will be di-
rectly related to the subgraph centrality in GENs accord-
ing to the following expression:

γ1 (i) ∝ A [SCodd (i)]η (7)

where A ≈ [sinh (λ1)]
−0.5 and η ≈ 0.5. This means that

a linear correlation exists between the γ1 (i)and SCodd (i)
for GENs, which in a log-log scale can be written as [30]:

log [γ1 (i)] = log A + η log [SCodd (i)] . (8)

Consequently, a log-log plot of γ1 (i) vs. SCodd (i) has to
show a linear fit with slope η ≈ 0.5 and intercept log A
for GENs. This “ideal” straight line is illustrated in all
the Figs. showing spectral scaling along this paper. A case
where this ideal case coincides with the plot of data points
for a real network is illustrated in Figure 2a. However,
the attachment of a small cluster to this network with a
few links connecting the two major chunks of the network
makes the GE properties disappear. This case is illustrated
in Figure 2b. This lack of GE properties is immediately
obvious from the lack of scaling observed because the spec-
tral gap (λ1 − λ2) is not “sufficiently large”. In this case
it is observed that despite node A showing a great deal of
cliquishness, and consequently a large value of SCodd (i),
it displays a low value of the largest eigenvector, γ1 (i).
This means that the probability that a walk selected at
random in the network has started at this node is very
low. The explanation is, of course, due to the fact that
most of the walks can visit the nodes at the right part
of the network (blue nodes) an infinite number of times.
This node A is the most distant from the largest cluster
of the network, i.e., it is separated by three steps from the
blue nodes. The situation is different for node B, which is
directly connected to the nodes in the larger cluster and
the probability γ1 (i) is proportional to its cliquishness.
The rest of nodes, which are at distance two are in an
intermediate situation compared to nodes A and B.

The situation is identical if we consider one network
as illustrated in Figure 3a and then rearrange it into two
clusters with very few connections between them (Fig. 3b).
In this case, despite both networks display the same de-
gree distribution, the first shows GE properties and the
second not as illustrated by their spectral scaling. Note in
Figures 2 and 3 that the spectral scaling is always able to
discern between GENs and non-GENs despite the spectral
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Fig. 2. Scaling plot of a network with
good expansion properties (a) corre-
sponding to the food web of Benguela.
Nodes A and B correspond to the those
with lowest and largest cliquishness in
the network, respectively, which also
show the lowest and largest probabil-
ities that a walk selected at random
in the network have started at one of
them. The network illustrated in (b) is
formed by attaching a small cluster to
the network given in (a). This network
lacks good expansion properties due to
the presence of a bottleneck connecting
the nodes in blue to those in red.

gap not always distinguish between these two cases. For
instance, in Figure 2 the difference between ∆λ for a GEN
and a non-GEN is not significant.

We will introduce here a measure of the GE character
of a network. The “good expansion character” of a complex
network is given by the deviation from this scaling plot,
in such a way that perfect GENs will have ξ (G) = 0; the
higher the value of ξ (G) the larger the departure of the
network from GE properties:

ξ (G) =

√
√
√
√ 1

N

N∑

i=1

{log [γ1 (i)] − [log A + η log [SCodd (i)]]}2
.

(9)

4 Network expansibility

Our investigation of the expansibility of complex net-
works starts with the analysis of 51 real-world networks.
They include the following naturally-evolving networks:
two protein-protein interaction networks (PINs), one for
Saccharomyces cerevisiae (yeast) and other for the bac-
terium Helicobacter pylori ; three transcription interaction
networks concerning E. coli, yeast and sea urchins; a neu-
ral network in C. elegans ; three networks of adjacency
of secondary-structure elements for large proteins; and 17
food webs representing a wide range of species numbers,
linkage densities, taxa, and habitat types. These webs are
Benguela, Bridge Brook, Canton Creek, Chesapeake Bay,
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Fig. 3. Illustration of the differences between networks with and without good expansion (GE) properties and having the same
degree distribution. (a) GEN; (b) non-GEN.

Coachella Valley, El Verde rainforest, Grassland, Little
Rock Lake, Reef Small, Scotch Broom, Shelf, Skipwith
Pond, St. Marks Seagrass, St. Martin Island, Stony, Ythan
Estuary (1) with and without parasites (2). The other sys-
tems are formed by man-made complex networks includ-
ing two semantic networks, one based on Roget’s The-
saurus of English (Roget) and the other on the Online
Dictionary of Library and Information Science (ODLIS)
and three citation networks: one consisting of papers pub-
lished in the Proceedings of Graph Drawing in the period
1994–2000 (GD), papers published in the field of “Net-
work Centrality” (Centrality) and papers published or cit-
ing articles from Scientometrics for the period 1978–2000
(SciMet); three electronic sequential logic circuits parsed
from the ISCAS89 benchmark set, where nodes represent
logic gates and flip-flops, the airport transportation net-
work in the US in 1997, the Internet at the autonomous
systems (AS) level as from April 1998 and five software
networks: Abi, Digital, MySQL, VTK and XMMS; 10 so-
cial networks that include a network of the corporate elite
in US, a scientific collaboration network in the field of
computational geometry (Geom), inmates in prison, in-
jectable drug users (IDUs), Zachary karate club, college
students on a course about leadership, a sexual network
in Colorado Springs and collaboration between Jazz musi-
cians. The results of the spectral scaling method are given
in Table 1 together with the values of the spectral gap and
principal eigenvalue for the 51 networks studied as well as
their degree distribution. In Figure 4 we illustrate the re-

sults of both the spectral scaling and degree distribution
for some of 51 networks studied.

These networks are classified as GENs or non-GENs
according to their values of the spectral scaling: correla-
tion coefficient, slope and expansion character. A network
is considered here to be GEN if ξ (G) < 10−2, r > 0.999
and Slope = 0.5, simultaneously. We find that only 39%
of the complex networks studied here show GE proper-
ties; of these, 65% are naturally-evolving networks and
only 35% correspond to man-made systems. Natural sys-
tems tend indeed to be GENs: only 42% of the complex
networks which are not GENs represent natural systems.
We have to remark that we have considered here non-
weighted networks for the analysis of their GE properties.
However, it is known that some of the networks analyzed
here have different weights for the links representing in-
formation valuable for the context in which such systems
exist in the real-world. Consequently, we need to distin-
guish between two different kinds of GE properties of net-
works. The first, which we have considered here, refers to
the “purely” topological expansibility character of a net-
work. These GE properties are concerned with the lack of
topological bottlenecks, whose elimination will separate
the network into large separated clusters. However, if we
consider weighted complex network then the analysis of
GE properties take a different dimension. In this case the
existence of GE represents a sort of “functional” expansi-
bility of the network, which is mainly concerned with the
lack of functional bottlenecks in such system. For instance,
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Table 1. Results obtained for the 51 complex networks studied in this work. The number of nodes (N) and links (E) as well as
the node degree distribution (DD) displayed by each network are given. The spectral parameters, λ1 (largest eigenvalue) and
∆λ (spectral gap) are also given together with the parameters of the spectral scaling: correlation coefficient, r, slope of the
regression plot in log-log scale and the expansion character, ξ(G). The networks are classified according to their good expansion
properties as determined by the classification method.

No. Network N E DD* λ1 ∆λ r Slope ξ(G)
Good expansion networks

1 Benguela 29 191 U 15.228 11.147 0.9998 0.50 6.30 × 10−3

2 Coachella 30 241 U 18.147 13.058 1.0000 0.50 7.18 × 10−5

3 Skipwith 35 353 U 22.076 18.648 1.0000 0.50 6.16 × 10−5

4 St. Martin 44 218 E 12.531 5.559 0.9999 0.50 1.50 × 10−3

5 St. Marks 48 218 U 11.865 6.934 0.9999 0.50 2.90 × 10−3

6 Reef Small 50 503 U 23.756 15.174 1.0000 0.50 4.31 × 10−5

7 Bridge Brook 75 542 U 20.639 7.943 1.0000 0.50 9.00 × 10−3

8 Shelf 81 1451 U 41.916 30.193 1.0000 0.50 6.75 × 10−5

9 Ythan2 92 416 E 15.771 9.635 0.9999 0.50 2.92 × 10−3

10 Centrality 118 613 E 19.331 10.896 1.0000 0.50 2.26 × 10−5

11 Ythan1 134 593 E 16.737 9.272 0.9999 0.50 1.50 × 10−3

12 El Verde 156 1439 E 31.494 22.082 1.0000 0.50 4.50 × 10−5

13 Little Rock 181 2318 E 40.816 14.643 1.0000 0.50 3.72 × 10−5

14 Small World 233 994 P 20.962 6.239 0.9999 0.50 3.26 × 10−3

15 Neurons 280 1973 E 23.293 9.227 1.0000 0.50 2.70 × 10−4

16 USAir97 332 2126 E 41.233 23.924 1.0000 0.50 9.04 × 10−5

17 Jazz 1265 38356 P-E 171.490 58.900 1.0000 0.50 1.03 × 10−3

18 ODLIS 2898 16376 P 44.184 15.677 0.9999 0.50 1.55 × 10−5

29 Internet97 3015 5156 P 31.754 11.673 0.9999 0.50 1.18 × 10−3

20 Internet98 3522 6324 P 34.892 13.195 0.9999 0.50 9.90 × 10−4

Not good expansion networks
21 College 32 96 E 5.971 2.161 0.9210 0.59 0.073
22 Chesapeake 33 71 EU 5.745 1.215 0.9824 0.48 0.094
23 Zachary 34 78 E 6.726 1.749 0.9490 0.55 0.066
24 Trans Urchins 45 80 E 6.684 3.735 0.8850 0.63 0.430
25 GD 49 635 E 9.210 1.480 0.9070 0.57 0.465
26 Protein2 53 123 U 5.809 0.723 0.8060 0.76 0.504
27 Prison 67 142 U 5.591 0.975 0.8290 0.40 0.228
28 Grassland 75 113 P 5.524 1.274 0.6150 0.31 0.518
29 Protein1 95 213 U 5.361 0.314 0.5220 0.74 1.100
30 Protein3 97 212 U 6.531 0.327 0.6940 0.64 1.200
31 Canton 108 707 E 19.559 12.524 0.9930 0.49 0.183
32 Stony 112 830 U 22.702 16.423 0.9905 0.50 0.219
33 Electronic1 122 189 U 4.106 0.476 0.6587 0.22 0.743
34 Digital 150 198 P 6.702 1.860 0.9852 0.44 0.323
35 Scotch Broom 154 366 P-E 14.714 8.714 0.9997 0.50 0.020
36 Electronic2 252 399 U 4.360 0.398 0.7321 0.23 0.746
37 ColoSpring 324 347 P 4.876 0.031 0.9147 0.38 0.802
38 Trans Ecoli 328 456 P 9.064 2.766 0.6970 0.52 0.764
39 Electronic3 512 819 U 5.010 0.889 0.6359 0.25 1.030
40 Drugs 616 2012 E 18.010 3.776 0.7410 0.71 1.390
41 Trans Yeast 662 1062 P 9.976 1.524 0.7240 0.40 0.796
42 PIN-2 710 1396 P 10.466 2.216 0.9890 0.50 0.104
43 VTK 771 1357 P 11.458 2.751 0.9868 0.50 0.140
44 XMMS 971 1802 E 10.28 1.352 0.7466 0.57 1.218
45 Roget 994 3640 PU 12.027 2.218 0.9770 0.58 0.230
46 Abi 1035 1719 P 11.945 4.269 0.9569 0.49 0.281
47 MySQL 1480 4140 P 21.740 7.300 0.9163 0.90 1.666
48 Corporate elite 1586 11540 UE 23.229 3.999 0.9937 0.51 0.053
49 PIN-1 2224 6608 P 19.039 3.355 0.9920 0.52 0.141
50 SciMet 2678 10368 P 20.429 3.525 0.9930 0.52 0.102
51 Geom 3621 9461 P 29.026 10.004 0.9320 0.56 0.452

*U = Uniform; E = Exponential; P = Power-law. Networks denoted by P-E display power-law degree distributions with an
exponential drop-off of the tail.
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Fig. 4. Classes of networks.
(a) GE network with uni-
form DD (St. Marks seagrass
food web); (b) GE network
with exponential/power-law
DD (El Verde rainforest food
web); (c) non-GE network
with uniform DD (Secondary
structure elements in the
immunoglobulin with PDB
1A4J); (d) non-GE network with
exponential/power-law DD (Di-
rect transcriptional regulation
between genes in Saccaromyces
cerevisae). Graphs on the left of
this figure show that a network
is GE if there is scaling between
the principal eigenvector and the
sum of odd-closed walks starting
and ending at a given node in a
log-log scale. The graphs on the
right side are linear-log plots of
cumulative distribution vs. the
number of links in the network.
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consider a network formed by two large chunks connected
only by a link. For the sake of simplicity let consider that
this network represent two parts of a city connected by a
bridge. If we consider the non-weighted network it is ev-
ident that this bridge constitute a bottleneck of the net-
work. However, let consider the same system as a weighted
network in which every link is weighted, for instance by
the number of lanes that the corresponding streets have.
In the case that the bridge has a large number of lanes it
is not necessarily a functional bottleneck. Thus, the GE
properties of this weighted network will depend on the
weights the links have. This lack of correspondence be-
tween topological and functional expansibility can be ob-
served in Figure 5 for the collaboration network studied
here for authors in Computational Geometry. When the
network is considered as a non-weighted one it lacks GE
properties as can be seen in the plot showed at the top.
However, if we consider a weighted network in which every
link represents the number of papers that the correspond-
ing two author have published together the network is a
GEN (see bottom plot). This means that in this partic-
ular case the topological and functional expansibility are
different. However, for the objectives of this work which is
mainly concerned with network robustness we think that
the most important characteristic is the topological expan-
sibility. Think for instance in the consequences of closing
the bridge in the example of the city given below. In this
case, no mater how many lanes this bridge has the two
major parts of the city will be incommunicated by roads.

Another important network attribute which is rele-
vant to the analysis of robustness is the node DD. It is
known that the response of scale-free networks to attacks
is similar to, but more pronounced than the response of
exponential networks to attack and random failure [6].
However, because uniform DD is less skewed that expo-
nential and power-law we expect that these networks dis-
play lower vulnerability to intentional attacks, which will
be explored further on in this work. By considering GE
properties and node DD together we can classify complex
networks into four different groups: (i) GENs with uni-
form DD; (ii) GENs with power-law or exponential DD;
(iii) non-GENs with uniform DD; and (iv) non-GENs with
power-law or exponential DD. Most of the GENs (65%)
show exponential or power-law DD. This group of net-
works included several of the “classical” complex networks
such as the Internet, the neural networks of C. elegans,
and the US airport transportation network, all of which
are known to be vulnerable to attacks at their hubs. The
remaining 35% of the GENs are complex networks with
uniform DDs. These networks do not contain bottlenecks
or show a skewed DD of nodes, in which the DD obeys a
power law or exponential law. On the contrary, in a net-
work with uniform DD there is the same probability of
selecting a node with degree a ≤ k ≤ b on the interval
[a, b] and this probability is zero outside this interval. As
a consequence networks with uniform DD can be consid-
ered as power-law networks, P (k) ∝ k−γ , with exponent
γ = 0. Due to these particular characteristics of GE net-
works with uniform DD distribution we expect them to

Fig. 5. Comparison of the expansibility characteristics of the
collaboration network in Computational Geometry when links
are considered as non-weighted (top) and weighted (bottom).
The study of the non-weighted network considers the purely
topological expansibility properties of this network. However,
the analysis of the weighted network is concerned with the
existence of functional expansibility in this complex system.

be more robust to intentional attacks against the most
connected nodes than the more skewed networks in the
other groups. In fact, the most robust food webs identified
by Dunne et al. [31], which coincide with the ones having
the highest average degree — Bridge Brook, Coachella and
Skipwith — display uniform degree distribution and have
been identified here as having GE properties.

The totality of uniform GE networks are exemplified
by food webs in different ecological systems [32]. At the
other extreme, 21 networks (∼41% of the total networks
studied) are not GENs and show power-law or exponential
node DD. Consequently, these networks should be vulner-
able to node/link attacks which operate by removing ei-
ther the hubs or the vertices/links which form bottlenecks.
In this most vulnerable group we find 6 social and 5 tech-
nological networks. The absence of GE properties in social
networks reveals one of their most prominent topological
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Fig. 6. Network fragmentation resulting from removal of nodes. (a) Removal of the most connected nodes from networks with
uniform DD. GE networks (St. Mark’s Seagrass) tolerate this well but non-GE networks (Electronic Circuit 1) are fragmented
catastrophically by removal of only 20% of their nodes; (b) removal of bottleneck nodes from non-GE networks with uniform
DD results in decomposition of the network after removal of only 10% of the nodes; (c, d) removal of hubs or bottleneck nodes
from non-GE networks with exponential/power law DD. The networks are more vulnerable to attack at the bottleneck nodes,
because many of the hubs in these networks, the yellow squares in e (injecting drug users) and f (E. coli transcription networks),
are not bottleneck nodes. A node is more important (larger circles/squares in e and f) when its removal isolates a larger part
of the network.

characteristics: the appearance of highly clustered commu-
nities [33]. Only 27% of the technological, infrastructure
and communication networks studied show GE proper-
ties, thus almost 73% of the man-made networks studied
here, for example, the software networks and electronic cir-
cuits can be regarded as very vulnerable. The global conse-
quences of topological structures on the robustness, func-
tioning and strategic management of complex networks
will be evident from the following analysis.

5 Network robustness

We simulate a first strategy of attack on complex networks
by successive removal of the nodes in decreasing order of
connectivity. We start by studying networks with uniform
DDs. In Figure 6a we illustrate the effect of removal of
the most connected nodes in a food web having GE prop-
erties and showing uniform DD. It can be observed that
after removing almost 60% of nodes the largest cluster
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retains about 40% of the total number of nodes originally
in the network. However, when a network with uniform
DD but lacking GE properties is attacked by this strategy
the picture is quite different. As illustrated in Figure 6a for
an electronic circuit the removal of only 25% of the hubs
reduces the largest cluster to about 10% of the components
in the original circuit. This situation occurs because the
uniform distribution of node degrees ensures that many of
the most connected nodes coincide with bottleneck nodes
in the electronic circuit. Of course, the removal of bot-
tleneck nodes produces catastrophic fragmentation in a
network lacking GE properties. This constitutes our sec-
ond strategy of attack on complex networks. By removing
bottleneck nodes we also simulate the effect of removing
bottleneck links. In Figure 6b we illustrate the effect of
removing bottleneck nodes of the three networks formed
by secondary structure elements of proteins, which repre-
sent networks in our third group. It can be seen in this
case that the elimination of only 6–12% of nodes reduces
the largest cluster to less than 20% of its former size.

In those networks which are not GENs and which dis-
play exponential or scale-free DDs an informed agent can
use either or both of these two strategies to inflict deliber-
ate damage on the network structure. A third strategy was
considered by Holme et al. [34] by using the betweenness
centrality (BC), which is defined as follows [35]. If ρ (i, j)
is the number of shortest paths from node i to node j,
and ρ (i, k, j) is the number of these shortest paths that
pass through node k in the network, then the betweenness
centrality of node k is given by:

BC (k) =
∑

i

∑

j

ρ (i, k, j)
ρ (i, j)

, i �= j �= k. (10)

In Figures 6c and 6d we illustrate the consequences of
using these three alternatives for a social network of in-
jecting drug users (IDUs) with exponential DD and for
the biological network of direct transcriptional regulation
between operons in E. coli, which has scale-free charac-
teristics. As can be seen in both cases the attack over the
bottleneck nodes causes the networks to disintegrate faster
than does hub removal. In the social network, removal of
only 1.5% of bottleneck nodes reduces the main cluster to
a size representing less than 50% of the original network.
The strategy based on BC removals produces a faster dis-
integration of the network as compared to hubs removals
but in neither case overtakes the effects produced by bot-
tleneck removals. In fact, it could happen that the bot-
tlenecks are those nodes having the largest betweenness,
which is the case for instance of the E. coli network. In
Figure 6e we illustrate some of this network’s bottlenecks,
which are formed by a small number of links connecting
clusters with a large number of internal interconnections.
Only 25% of these bottleneck nodes coincide with some
of the hubs in the network (marked as yellow squares). In
some cases, the removal of only one bottleneck node iso-
lates a large cluster of individuals from the main drug user
community. The situation is quite similar for the scale-free
network for which the removal of about 3% of bottleneck

nodes produces a catastrophic fragmentation of the net-
work (see Fig. 6f).

An interesting question that arise from the previous
analysis is whether the vulnerability of non-GENs arises
as a consequence of this topological characteristic or it is
produced by other organizational principles. We have pre-
viously shown in this work that two networks with the
same degree distribution can show different expansibil-
ity properties due to different organization of the links
in the network (see Fig. 3). In order to know how these
differences in expansibility affect the resilience of a net-
work to intentional attacks we have studied the Grassland
food web, which is a non-GEN with power-law DD. We
have improved the good expansion character of this net-
work by means of a random rewiring in such a way that
we have created a random network with the same DD
(and average degree) than the real-world web. In Figure 7
we can see that the random network with identical DD
that Grassland display more robustness to targeted at-
tack against the most connected nodes only because the
number of bottlenecks have been reduced as a consequence
of the rewiring. Consequently, this experiment evidences
that the lack of GE properties is an important factor for
understanding network resilience to targeted attacks.

We have shown that most technological networks
analysed here are not robust to node/link removal due to
their lack of GE properties or to the scale-free/exponential
degree distributions. In fact, all networks which we
have identified as robust against random failure and
node/links attack represent naturally-evolving systems.
Network designers can consider Nature and design new
infrastructure and communication networks by imitating
naturally-evolving robust systems. On the other hand, it is
possible to achieve strategic control of certain networks by
taking advantage of their lack of GE properties. The first
example can be provided by drug design strategies. These
can include the targeted attack on networks of protein
interaction in pathogenic organisms by designing drugs
that specifically prevent the interaction between bottle-
neck proteins. Last, but not least, are social networks lack-
ing GE properties. Here the strategy consists in avoiding
the interactions between individuals that represent bottle-
neck nodes in certain social networks, such as drug users or
sexual partners, by appropriate educational programs or
vaccination campaigns. Our results then suggest a strat-
egy to design new robust networks, to exploit the weak-
ness of certain complex systems for human benefit, and
to protect existing vulnerable networked infrastructures.
The results obtained here are based on an empirical anal-
ysis of a large pool of complex networks. However, we are
optimistic that these findings can help the understanding
of network robustness and can inspire more fundamental
analytical results supporting these conclusions.
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D.J. Watts for generously providing datasets. This work was
partially supported by the “Ramón y Cajal” program, Spain.
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Fig. 7. Comparison of network resilience to targeted attack against the most connected nodes for networks with the same degree
distribution and average degree and different expansion character. (a) Spectral scaling of the real-world network (Grassland
food web) which is a non-GEN with power-law DD; (b) spectral scaling of a random network with the same DD but having an
improved expansion character compared to Grassland food web; (c) resilience of both networks to targeted attack against the
most connected nodes.
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